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Table 1. 25 Values of ~÷ and ~÷ for a derivative of fl-lactam 

Signs in parentheses are the true signs of the main reflections. 

Indices of main terms 

h k 
Observed magnitudes, I EI 

N u m b e r  h k ½(h + k)  

1 4 8 9 2 0 11 2 . 4 6 ( - )  2 . 8 1 ( - )  3.49 
2 2 13 3 0 1 3 2.35( - ) 2.06( - ) 2.79 
3 9 4 4 5 4 12 2 .61(+)  2 .05(+)  2.04 
4 9 4 4 3 12 6 2 .61(+)  2 .12(+)  2.11 
5 2 11 7 2 9 1 2.50( + ) 2.54( + ) 2.36 
6 8 9 2 2 11 0 2 .21(+)  2 .63(+)  2.36 
7 4 17 0 2 7 0 2 .56(+)  2 .10(+)  2-33 
8 7 13 1 3 13 9 2 .70(+)  2 .50(+)  2-38 
9 4 10 3 4 8 9 2-03( - ) 2.46( - ) 1-88 

10 6 2 10 2 2 6 2 .06(+)  2 .05(+)  2.23 
11 3 14 2 1 6 0 2 .31(+)  2 .60(+)  1.88 
12 4 11 3 0 I 3 2 .01(+)  2 . 0 6 ( - )  !.92 
13 5 7 5 5 3 1 2 .20(+)  3 .00(+)  2.26 
14 2 10 4 0 2 2 2.36( - ) 2.59( - ) 1.43 
15 3 5 8 3 11 2 2 .85(+)  2 .00(+)  3.05 
16 6 14 2 2 4 12 2 . 5 7 ( - )  2 . 3 8 ( - )  1.85 
17 8 8 4 2 2 6 2 - 2 5 ( - )  2 .05(+)  0.88 
18 5 5 7 3 13 9 2 . 1 4 ( - )  2 .50(+)  1.50 
19 9 5 3 1 7 !1 2 . 0 6 ( - )  2 .12(+)  1.99 
20 3 5 8 3 3 10 2.85( + ) 3.05( - ) 1.78 
21 6 14 2 2 2 6 2 . 5 7 ( - )  2 .05(+)  1.80 
22 4 11 3 2 1 11 2 .01(+)  2 . 6 9 ( - )  1.99 
23 4 16 2 2 2 6 2.00( - ) 2.05( + ) 2.89 
24 3 14 2 3 6 0 2 .30(+)  2 . 1 6 ( - )  2.06 
25 5 5 3 I 7 11 2 . 2 6 ( - )  2 .12(+)  1.99 

Heavy-atom 
contribution E P 

½(h-  k) h k ~ +  .~+ 

2"34 -1"91 -1 .04  0.99 0'95 
2"60 -0"58 - I - 8 6  0.98 0"91 
1 "89 1 "86 I '99 0-97 0"73 
2"06 I "86 I "65 0-97 0"78 
2"06 1"06 1"87 0"97 0"83 
0"84 1 "59 1-86 0.97 0.75 
2.04 1 "98 I "20 0.97 0-80 
I "56 1 "96 1.57 0"96 0"74 
2.06 - 1.60 - I "91 0.95 0.73 
1-95 1.46 0"92 0"89 0"75 
2-34 1 "34 0-56 0"88 0"79 
3"14 0"01 -1"86 0"86 0"86 
2"59 -0 .09  1"37 0'83 0-89 
2"34 - I  '59 -0 .67  0"82 0"69 
2"59 1"89 -0-48 0.76 0"93 
2.08 -0 .42 0- I I 0.74 0-75 
2"61 0"93 0-92 0.63 0"53 
2"34 -0"69 1-57 0'53 0-69 
0"53 -0"35 -0 .77 0'50 0.49 
1" 11 1-89 -0"66 0"50 0-59 
0" 16 -0 .42 0"92 0-48 0-49 
0"54 0"01 -1"58 0"48 0-48 
2"26 - 1 '66 0'92 0"46 0"87 
2"07 1 "34 - 1 "39 0.43 0"76 
0.74 1"85 -0-81 0.41 0"51 

to employ the higher neighborhoods for the better 
estimation of structure invariants and seminvariants. 

The authors are grateful to Professor H. Hauptman 
for going through the first draft of this paper and 
making some helpful and constructive comments. 
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Abstract 

The theory of X-ray two-beam dynamic diffraction 
by the one-dimensional ideal superlattice (SL) in the 
Laue and Bragg cases is developed. The reflection 
and transmission amplitudes of the SL are expressed 

by those for one period of the SL. General expressions 
revealing the behavior of the diffraction pattern, irre- 
spective of the particular model, are obtained. A 
detailed analysis is carried out for the most important 
case: z0<< A (z0 and /( being the SL period and the 
mean extinction length of  the crystal, respectively). 
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1. introduction 

Superlattices (SL) are crystalline structures, in which 
electrons are affected by, besides the periodic lattice 
potential, an additional periodic potential with period 
considerably exceeding the lattice parameter. Owing 
to a number of unique properties, the SL has good 
prospects of being widely applicable to microelec- 
tronics and computer engineering (Shick, 1974). 
Being important in applications, the SL perfection 
has been investigated by various methods of X-ray 
and electron microscopy analysis (Matthews & 
Blakeslee, 1974, 1975, 1976; Petroff, Gossard, Savage 
& Wiegmann, 1979). The theoretical investigations of 
X-ray diffraction on various types of natural (super- 
structures, layered semiconductor compounds, poly- 
type structures, charge density wave structures) and 
artificial SLs (the use of ultrasonics, multilayer thin- 
film structures based on heterojunctions) were con- 
fined to the kinematic approximation treatment (de 
Fontaine, 1966; Korekawa, 1967; Segmiiller & 
Blakeslee, 1973; B/Shm, 1975), which holds if Zo,~A~ 
(z0 is the SL period and A the mean crystal extinction 
length) and D ~ Am (D is the thickness and A,,, the 
extinction length of SL, respectively). While the first 
condition is usually satisfied for most SL types, this 
is not the case for the second. 

The dynamic theory, which takes into account the 
interaction between the incident and reflected waves, 
was employed in the problem of X-ray diffraction on 
the harmonic model SL. The solution of Takagi's 
equations for small amplitudes of the additional po- 
tential is given by Khapachev, Kolpakov, Kouznetzov 
& Kouz'min (1979). At Zo "~ A the problem is reduced 
to well known two-wave dynamic theory (K/Shier, 
M6hling & Peibst, 1974). At zo=A an interesting 
resonance, which is very sensitive to weak ultrasonic 
strains, has been theoretically studied and then 
experimentally found (Entin, 1978). 

The characteristic matrix method employed in the 
theory of X-ray diffraction in multilayer crystalline 
films was developed by Kolpakov & Belyaev (1982). 
However, the authors restricted themselves to the 
detailed analysis of a two-layer system only. 

X-ray dynamic reflection from the SL, consisting 
of the ideal layers of crystalline lattices equally shifted 
with respect to each other, is considered by Var- 
danyan & Manoukyan (1982). 

In the present paper the two-beam dynamic theory 
of X-ray diffraction on the one-dimensional ideal SL 
is developed. 

2. The SL reflection and transmission amplitudes 
~.. 

( a ) Laue case 

Let a plane monochromatic X-ray wave of unit 
amplitude be incident on the SL consisting of N 
identical crystalline layers, which we call the SL cells 

(see Fig. 1). We introduce the following designations: 
@hN and @oN are, respectively, the reflection and 
transmission amplitudes of the SL consisting of N 
cells; rh, ra and to, t~ are, respectively, the reflection 
and transmission amplitudes of one cell; h is the 
reciprocal-lattice vector and the dash corresponds to 
incidence from the back of the reflecting planes. 

The waves ~o~N-~) and ~h(N-z) emerging from the 
set of ( N -  1) layers are incident on the Nth layer, 
and for ~hN and @oN we obtain the following recur- 
sion equations: 

~I)hN = t~ t~h(N- l ) - I -  rhfl)o(N_l) (1) 

t2~ON = r gt2~h( N_ l  ) q- /0 t~0(N_l) .  (2) 

F o r N = 0 a n d  N = I  we have 

~hO ~-" O, ~ h l  = rh (3) 

and 

~0o = 1, ~01 = to. (4) 

The solutions of (1) and (2) are given in Appendix 
A, and are of the form 

C19hN= i(-~g) ~/2 sin ( Ntp) 
(1 + ~2),/2 (5) 

~oN = cos (N~o) (1 + ~:2)!/2 sin (N~), 

(6) 

where 

~= ( t~-  to)/2(rhr~) 1/2 (7) 

sin ~=--i(rhra)l/2(1 + ~2)i/2 (8) 

Expressions (5) and (6) are similar to the formulae 
for the reflection and transmission amplitudes of an 
ideal crystal (Pinsker, 1978), with the only difference 

N - 1  

N 

1 I 

Fig. I. The geometry of diffraction in the Laue case. 
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being that instead of the deviation parameter from 
the Bragg angle 0n, 

s = 2k sin 0B(0 - 0n), (9) 

here we have the parameter se(s), dependent on the 
SL model. If the crystal is ideal (i.e. the superperiodic- 
ity is absent) one may suppose it to be composed of 
N equal layers each of thickness Zo, and substituting 
the corresponding formulae for reflection and trans- 
mission amplitudes of the ideal layer in (7) and (8), 
we obtain 

~(s)= s/ f l  (10a) 

N~p= T r D ( s 2 +  fl2) '/2, ( 1 0 b )  

where D is the crystal thickness and 

k C ( X h X g )  1/2 "IT 
/3- = - -  (11) 

cos 0n A 

is the inverse extinction length; k = 1/h is the wave 
number in vacuum; C is the polarization factor; Xh 
and gg are the Fourier components of crystal suscepti- 
bility. The directions of the diffraction maxima (satel- 
lites) correspond to the roots of the equation 

~:(s) = 0. (12) 

( b ) Bragg case 

The reflection geometry is given in Fig. 2. Taking 
into account the multifold reflections from the boun- 
daries of the SL cells, we obtain the following recur- 
sion equations: 

2 
~hN = rh + to to~h(N- l )  + to t6rgOh(N- l )  + .  • • 

= rh + Oh(N-~)(toto-- rhra) (13) 
1 - rgfiT)h(N_l) 

~0N = to ~0(N-I)/[ 1 -- rg~h(N-1)] (14) 

under conditions (3) and (4). 

, IZo 
2' 

N - 1  

N 

"~a ~0N 

+% 
i I 

r i 
Fig. 2. The geometry of  diffraction in the Bragg case. 

The solutions (13) and (14), given in Appendix B, 
are of the form 

~ h N = ( _ ~ )  1/2 sin (Nq~) (15) 
sin (N~ + arccos ~:) 

~oN = (t~) N/2 sin (arccos , )  (16) 
sin (N~ + arccos ~:)' 

where 

and 

~: = [1 - tots+ rhr~]/2(rhra) u2 (17) 

sin ~-[(rhra/ to ts ) (1-~2)]  '/2. (18) 

In the Bragg case the deviation parameter from the 
Bragg angle is 

s = 2k cos 0B(0 -- 0n - Xo/sin 20B), (19) 

where Xo is the zeroth Fourier component of crystal 
susceptibility. 

In the case of an ideal crystal ~:(s)= s/fl,  where 

fl = ~rkC(XhXa)~/2/sin OB. (20) 

For the thick SL ( N ~ o o )  from (15) we obtain 
(a) at I~:1> 1 

o- ( 5 "  = [~:~: (~2-1)' /2],  (21) 

where the upper sign corresponds to ~:> 1 (type III 
ranges) and the lower one corresponds to ~: < - 1 (type 
I ranges). 

The reflectivity 

RI,III _ h~ - [ 1 ¢ 1 - ( ¢  2 1)'/2Y (22) 

decreases rapidly with increasing I£[; 
(b) at [~:[-< 1 (type II ranges) 

o.  = [ ~ -  i(1 - ~9) u2 ] (23) 

and the reflectivity is 

R~,~= 1. (24) 

Thus, a total reflection of an incident X-ray wave 
occurs from a thick nonabsorbing SL within certain 
ranges of incidence. 

Directions of the diffraction maxima (satellites) are 
found from (12). 

3. Diffraction by the SL of a short period 

To find the expression ~:(s), it is necessary to obtain 
the reflection and transmission amplitudes of a single 
SL cell, which at Zo -> 5, can be done by solving the 
Takagi (1969) equations. The analytical solution of 
these equations can be found for particular cases 
only, and generally they are solved numerically. The 
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formulae obtained in this paper make it possible to 
reduce the numerical solution of the Takagi equations 
for an arbitrary ideal SL to the one for a single SL 
cell, which greatly reduces the operation time. The 
problem is much simplified for the case Zo ~ A. This 
approximation is valid for superstructures, multilayer 
thin-film heterostructures, and a crystal placed in a 
short-wave ultrasonic field, etc. In this case the disper- 
sion surfaces of different diffraction maxima do not 
intersect and the two-wave approximation is valid 
(K6hler, M6hling & Peibst, 1974). When Zo<A~ one 
can write for to, ta and rh, r~ their kinematic formulae 
(James, 1948): 

and 

to = exp [-iTrgZo] 
(25) 

t~ = exp [ iTrgzo] 

i~rkC~h z° 
rh -- COS-------~ exp (iTrgZo) ~ o exp[-i27rg(z)z dz 

i~rkC~r, ~o (26) 
r h - - - -  exp (-iTrgZo) ~ exp[i2~r~(z)z] dz, 

COS On o 

where s(z) is defined by (9) and indicates the local 
deviation from the Bragg angle and g, Xh, Xg and fn 
are mean values of the corresponding quantities 
averaged over the SLper iod:  

z o 

1 
P 

g= g(Zo) = -  [ s(z) dz= 2k cos fn(O - fie) 
Zo ,! 

o 
(27) 

Z 0 

2h, g = ( 1 / Z O )  ~ Xh, a(z) dz ( 2 8 )  
o 

z o 

fn = (l/zo) j" On(z) dz. (29) 
o 

Substituting (25) and (26) in (7), we find 

where 

sin (TrgZo) 
~(g)-  ~r~zolM(g)l' (30) 

z o 

M(g) = 1  f exp[-i27rg(z)z]dz (31) 
Zo 

o 

and /3  is the average value of ft. 
Solving (12), we obtain 

g==m/zo (m = 0 ;  +1; + 2 ; . . . ) .  (32) 

The distance between the satellites 

a = 1/Zo (33) 

is independent of the satellite order. 

Let us expand ~:(g) in a Taylor series in the vicinity 
of g,, points and restrict ourselves to the first term: 

where 

( - - 1 )  m 

so(g)= tiM= (g-g=)' (34) 

Mm=lM(gm)[<l.  (35) 

Substituting (26) into (8) we obtain 

~ ( g ) =  7r/3M=zo(1 + so2) 1/2. (36) 

The comparison of (34) and (36) with (10) shows that 
within the mth satellite one may consider the SL as 
an ideal crystal with the modified Fourier components 
of crystal susceptibility 

[Xh=l-- 12hiM=. (37) 

The parameter M= depends on the SL model and 
satisfies the following condition (see Appendix C)" 

o o  

E M 2 =  1. (38) 
m=--oo 

The same conclusion is valid in the Bragg case. Since 
M= -< 1 holds for any model, then the widths of the 
SL diffraction maxima are less than those for an ideal 
crystal, and the Bormann effect is weaker. 

The SL extinction length 

A= =.A/ M= (39) 

is larger than that of an ideal crystal, therefore the 
X-ray wave penetrates into the SL deeper than into 
an ideal crystal. 

The kinematic approximation for the SL holds, if 
D ,~ A=, D being the SL thickness. 

Formulae (32) and (37) may also be obtained by 
the following considerations. The SL is characterized 
by an average over the SL period value fn. From the 
Laue condition 

2 7rkzo(sin Om -- sin OB) = 7rm 

and assuming 0 -  08 "~ 1, we find 

g= = m/zo. 

When the SL period is small, one may neglect multi- 
fold reflections inside the SL cell. Then 

z o 

o 

= 12hlMm. 

The calculation of the superstructure factors M= for 
various SL models is carded out in paper II 
(Vardanyan, Manoukyan & Petrosyan, 1985). 

i 
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4. The absorption effect 

The formula for the amplitude reflected from the SL 
X-ray wave is obtained using the corresponding for- 
mula for an ideal crystal when replacing the para- 
meter s/ f l  by ~c. Therefore, to take into account X-ray 
absorption in the SL, it is sufficient to replace 
Re ( s / ~ )  and Im (s i f t )  by Re ~:= ~:r and Im ~:= ~:i, 
respectively, in the corresponding formulae for an 
ideal absorbing crystal given by Pinsker (1978). 

The reflectivity for the SL with an infinite number 
of elements is of the form 

R m  = E m - (  E2m - l) 1/2, (40) 

where 

em =[1 + (~r + ¢~)~-- 2(~-- ~)]1/~ + ~ + ~. 
(41) 

At X-ray incidence in the g,~ direction, i.e. when ~:, = 0, 
we have 

R,,,(gm) =[R(O)] I/M", (42) 

R(0) being the reflectivity of an ideal absorbing bulk 
crystal with averaged parameters. 

Since R ( 0 ) <  l, then at relatively small values of 
M,,, the ruth-order reflection intensity will be too low. 

A P P E N D I X  A 

Let us show that in the Laue case 

to ts-  rhr ;, = 1. (A-l)  

The coefficients to, rh and ta, rg are defined by the 
Howie-Whelan equations (Amelinckx, 1964): 

dto i ( Xh) I/2 
- - +  iTrs( z) to = rh 
dz ~\X~;/  

(A-Z) 
drh iTrs(z)rh { ~ to - - -  = i | X h ,  '/2 
dz f l \Xh / 

and 

where 

dto ,2 
d z = ~-~. ] r a 

dra i ( Xh~ 1/2 
~ - t -  iTrs( z)rg = to, 
dz f l x x  ~/ 

(A-3) 

s ( z ) = s + d ( h u ) / d z  

is the local deviation from the Bragg condition. From 
(A-2) and (A-3) it is readily seen that 

d( tots-  rhra)/dz = 0 (A-4) 

and 

tot8- rhra = constant. (A-5) 

At z = 0 the boundary conditions are to = t6= 1 and 
rh = r g - -  0. Hence the ratio (A- 1) is valid. 

Taking into account (A-I)  from (1) and (2) we 
obtain 

CDj, N=(IO-I-t6)C1)j(N-I)--t~)j(N_2) ( j  = 0, h ) .  
(A-6) 

The general solution of (A-6) is in the form of a linear 
combination of Chebyshev polynomials: 

tI)jN = OljTN('O)'+ [~jUN( ~), (A-V) 

where 

TN =cos (N~) 

UN = sin [ ( N +  1)~]/sin 

are Chebyshev polynomials of first and second order, 
respectively (Gradstein & Rizjik, 1971) and 

77 = cos ~ = (to+ t8)/2. (A-8) 

The coefficients % and fit are defined from conditions 
(3) and (4): 

~h = --ah = 2rh/ ( to + ts) ( A-9) 

flo = 1 - a o = ( t o - t s ) / ( t o + t s ) .  (A- 10) 

Substituting (A-9) and (A-10) into (A-7), we obtain 

~hN = rn sin (N~o)/sin ~o 

to - t6 sin (Nq~) 
qbON = cos (Nt#)-t 

2 sin 

Let us introduce the following designation: 

( ) 1 / 2 t S - t °  sc = r/2-__1 1 - (A-13) 
rhr~ 2(rhrr~) 1/2" 

Then (A-11) and (A-12) can be transformed to the 
form 

i[rh ~ 1/2 sin (N~) 
~ h N  = (1 + ~:2)1/2 (A-14) 

@ON =COS (N~) (1 +~2)1/2 sin (N~),  

(A-15) 

where ~, is connected with ~: by the following relation: 

sin ~ = --i(rhra)l/2(l +~2)1/2. (A- 16) 

(A-11) 

(A-12) 

A P P E N D I X  B 

We try the solution of (13) in the form 

CfbhN = AN/BN. (B- 1 ) 

Substituting (B-l) into (13), and comparing the 
obtained expression with (B-1), we obtain the set of 
recursion equations 

AN = rhBN-~ + (tots-- rhr~)AN-I 
BN = BN- I -- raAN_ 1. 

(B-2) 
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Eliminating BN, we obtain 

AN = (1 + tot~-- rhr~)AN-1 -- tot~AN-2. (B-3) 

We try t he  solution of  (B-3) in the form 

Arc = (tot~) N /2 FN. (B-4) 

Substituting (B-4) into (B-3), we obtain 

FN = 2rlFN_I -- FN_2, (B-5) 

where 

r l = [ l  + tot~--rhra]/2(toto) ~/2 (B-6) 

The solution of (B-5) is a linear combination of  the 
Chebyshev polynomials: 

F N = a T N ( r l ) + f l W N ( r l ) .  (B-7) 

Substituting (B-7) into (B-4), we get 

AN=(tot~)N/2[aTN(~7)+/3UN(rl)] .  (B-8) 

From condition (3), we find a - - - / 3  and 

AN =(tot~)N/2/3 sin (N~0) cotan ~o, (B-9) 

where 

7? =COS ~p. 

Determining BN from (B-2) and substituting it into 
(B- 1), we find 

~hN=(_~g)  1/2 sin (N~o) (B-10) 
sin (N~o + arccos f ) '  

where 

se=(l-- tots+rhrg)/2(rhrg)  1/2 (B-11) 

sin ~o=[(rhr~ltoto)/(1--¢2)] ~/2. (B- 12) 

The solution of  (14) is 

N 

qboN= boo I-[ aj, (B-13) 
j = l  

where 

as= to/[1--rgtPhfj-l)]. (B- 14) 

Taking into account condition (14) and formula 
(B-10), from (B-13) we obtain 

qboN=(  t~) N/2 sin (arcc°s ' )  (B-15) 
sin (N~  + arccos f)" 

A P P E N D I X  C 

The SL cell structure factor is defined by 

Z 0 

Mm=l(1 /Zo)  ~ d z e x p [ ' i 2 ~ r i s ( z ) d z ] .  (C- l )  
0 0 

The local deviation s(z)  may be represented by 

S ( Z ) = g m + q ( z ) ,  (C-2) 

where 
g,,, = m/zo  (C-3) 

z o 

I q(z )  d z = 0 .  (C-4) 
0 

Substituting (C-2) and (C-3) in (C-I) ,  we obtain 

2¢r XZo/t 2 cr ) 
M m = l ( 1 / 2 w )  I d x e x p [ - i m x - i 2 7 r  q(z)dz][ .  

0 0 

Hence, 
oo 2~  

M2 =[II(2¢r) 2111 dx dx '  
m=-oo 0 XZo/ ( 2 ~r ) 

xexp  [ - i27r  
x'zo/(2~r) 

Since 
co 

E 

where 8(x) is the Dirac function, so 

E M2m =1.  
m =--oo 

q(z)  dz] 

co 

X ~ exp [ - i m ( x - x ' ) ] .  
m=--oo 

Q 

exp [ - i m ( x -  x')] = 2~rS(x-  x'),  
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